
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 275 (2004) 89–106

Wave propagation in a weak viscoelastic layer produced by
prescribed velocity on the boundary

M. El-Raheb*

1000 Oak Forest Lane, Pasadena, CA 91107, USA

Received 31 July 2002; accepted 18 June 2003

Abstract

Four models are employed to analyze wave propagation from impact on a weak viscoelastic layer. Each
model is exploited on the basis of its particular strength and all four are used co-operatively in a study that
overcomes the limitations of each. These models are: a numerical finite volume model serving as reference
which couples motions of projectile and layer, a two-dimensional viscoelastic model with prescribed
pressure on the boundary, and two versions of a three-dimensional axisymmetric elastic model; one with
prescribed pressure at the boundary, and one with prescribed velocity at the boundary. This last model
superimposes the responses from several external annular pressure segments of unit intensity with time-
dependent weights yielding a combined response equal to the prescribed instantaneous velocity. Stress
histories from all models are comparable with greatest difference near the excited boundary.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in semi-infinite and finite elastic media has been treated extensively in the
literature. Methods of solution include such discretizations as finite element, finite difference,
finite volume, smooth particle hydrodynamics and boundary element methods [1–12], meshless
methods [13], and such hybrid analytical/numerical methods as modal analysis and integral
methods. A related but more challenging problem includes media with viscoelastic properties. One
application is linear stress waves from low velocity impact in weak viscoelastic materials
simulating blunt trauma in living tissue. The properties may be approximated by a polymeric
gelatin that has an acoustic impedance close to that of water yet it dissipates energy from
viscoelasticity and possesses shear rigidity controlling transverse propagation.
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A substantial body of literature concerning lung and brain tissue trauma was published by the
University of Pennsylvania Injury biomechanics Laboratory. One such model employs the
ANSYS finite element program (ANSYS Inc., Houston, PA) with a heuristic time-dependent
shear modulus independent of strain and its temporal derivatives: GðtÞ ¼ GN þ ðGo � GNÞe�bt:
However, all these studies concern forcing pulses lasting over a millisecond where simple
viscoelastic constitutive models may apply. In this work, the duration of the forcing pulse is of the
order of a few microseconds where more refined viscoelastic constitutive models are valid.
Despite their ability to handle general geometries and material properties, relying on pure

numerical methods alone has the following drawbacks:

(1) They require artificial viscosity to stabilize the numerical time integration which will mask the
effects of material viscoelasticity.

(2) They fail to reproduce the rapid rise time predicted by even a one-dimensional (1-D) model
which includes viscoelasticity.

(3) The type of viscosity that can be accounted for by the constitutive model is in terms of a
convolution integral rather than the more general differential form determined by fitting
experimental data in the frequency domain.

An analytical method will require as one of its input a realistic forcing function. This can be
approximated with confidence by the velocities predicted by either the purely numerical model or
a 1-D coupled viscoelastic model in those cases where these two predictions are in close agreement
soon after impact. The type of analytical model closest to the application would include all three
dimensions. However if a two-dimensional (2-D) analytical model could be constructed capable of
predicting the same results, then this model will be preferred for parametric studies. The form of
the forcing function closest to the application is a prescribed velocity at the boundary, yet this
would lead to a mixed boundary condition. This difficulty can be overcome by constructing a
corresponding 3-D axisymmetric model that superimposes responses from a set of unit pressures
with time-dependent weights prescribed on annular portions of the boundary. These weights are
updated at each time step from the condition that the combined velocity response at the footprint
equals the prescribed instantaneous velocity. In this way, the forcing function is converted to pure
traction with time varying spatial dependence. These considerations motivate a study that
includes constructing and comparing four different models: a purely numerical coupled finite
volume model; two 3-D axisymmetric analytical models, one with prescribed pressure and the
other with prescribed velocity; and a 2-D analytical model useful for a parametric study.
A finite volume model (Model 1) developed in Ref. [14] is employed to calculate the coupled

response. The average pressure over the footprint is applied as a forcing function to an elastic 3-D
axisymmetric analytical model (Model 2A) developed in Ref. [15]. The same forcing function is
also applied to a 2-D model (Model 3) developed in Ref. [16], including a viscoelastic constitutive
law. Comparison of results from the 3-D and 2-D models demonstrates the sensitivity of the
response to problem dimensionality.
The finite volume model of impact [14] reveals that velocity at the footprint is nearly constant

throughout the duration of impact. The 1-D model coupling projectile and disk when their radii
extend to infinity replicates this result. This motivates the 3-D axisymmetric Model 2B [15] with
prescribed velocity at the boundary that does not rely on the input from the finite volume model.
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Section 2 compares histories from the finite volume Model 1, the 3-D axisymmetric Model 2A
and the 2-D Model 3. Section 3 discusses the influence method behind Model 2B to include a
prescribed velocity at the footprint. The coupled 1-D model including viscoelasticity is developed
to compute peak pressure and velocity history at the footprint. Section 4 discusses effects of
damping on 1-D stress and velocity histories. Histories from Model 2B are then compared to
those from the other models with emphasis on stress history and its radial distribution over the
footprint.

2. Comparison of histories from Models 1, 2A and 3

In all results to follow, geometric and material properties of plastic cylindrical projectile and
gelatin disk are listed in Table 1, where E is the elastic modulus, r is mass density, n is Poisson
ratio, h is axial length or thickness, r is radius, ðcd ; csÞ are sound speeds of dilatational and shear
waves, and rcd is acoustic impedance of dilatational waves. Except for c; subscripts ‘‘p’’ and ‘‘d’’
are used throughout the text to denote projectile and disk respectively. In Model 1, the projectile
initial velocity is 20 m=s or 787 in=s: Also, all boundaries of the disk are stress free except at the
projectile footprint. In Models 2A and 3, the disk is simply supported along its perimeter. For
times soon after impact before reflections from the disk perimeter, the response is insensitive to
boundary condition.
Figs. 1(a–c) illustrate instantaneous deformed shapes (snap-shots) of projectile and disk from

Model 1. Since the projectile is an order of magnitude stiffer than the disk, the interface remains
flat during the 15 ms event. At t ¼ 4 ms; the wave front is almost planar consistent with 1-D
propagation (see Fig. 1(a)). It evolves to a spherical front as it reaches the bottom boundary of the
disk at t ¼ 8 ms and reflects back toward the surface (see Fig. 1(b)). After the first reflection, a
transverse wave front forms and propagates toward the disk perimeter (see Fig. 1(c)). Figs. 1(d–f)
show the corresponding snap-shots fromModel 2A. The top short vertical dashed lines symmetric
about the disk axis mark the perimeter of the footprint. Unlike Model 1, the footprint in Model
2A is not flat, while it departs further from flatness as r increases. Also, bulging of material near
the perimeter in Model 1 is more pronounced than in Model 2A because of the larger displaced
volume in the former.
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Table 1

Properties of projectile and gelatin layer

Property Projectile Gelatin

E (lb/in2) 1:3� 106 4:5� 104

r ðlb s2=in4Þ 9:3� 10�5 8:7� 10�5

u 0.3 0.48

h (in) 0.98 0.49

r (in) 0.276 1.0

cd (in/s) 1:372� 105 6:74� 104

cs (in/s) 7:332� 104 1:322� 104

rcd ðlb s=in3Þ 12.76 5.86

M. El-Raheb / Journal of Sound and Vibration 275 (2004) 89–106 91



Fig. 2(a) plots average pressure pav over the footprint from Model 1. The oscillations
modulating the mean line are an artifact of the numerical analysis caused by reflections within a
finite volume cell. This is shown by Table 2, where the period of oscillation is listed for three
different choices of cell size, where the Dr is cell size, %O and %t are frequency and period of
oscillation, and %cr is a speed of propagation based on length scale 2Dr and time scale %t: The fact
that %cr is almost constant for all cell sizes is consistent with the cause of these oscillations being
numerical. Fig. 2(b) plots pav smoothed by filtering the numerical oscillations. This smoothing,
which can also be achieved by artificial viscosity, masks real viscous effects. Soon after impact, pav

attains its peak of 3� 103 psi which is close to the 1-D result:

p1-D ¼ ðrcÞeq:Vo ¼ 3:16� 103 psi; ð1Þ
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Fig. 1. Snap-shots from finite volume Model 1 (a)–(c) and 3-D axisymmetric Model 2A (d)–(f): (a), (d) t ¼ 4 ms; (b), (e)
t ¼ 8 ms; (c),(f) t ¼ 12 ms:
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where 1=ðrcÞeq: ¼ 1=ðrcÞp þ 1=ðrcÞd ; and Vo is the initial velocity of projectile. pav then diminishes
with time because of the conversion of part of the axial momentum to radial momentum. The
pulse width of 15 ms matches double the travel time along the projectile length. This also happens
to coincide with double the travel time along the disk thickness.
Fig. 3 compares histories of axial displacement w; and radial and axial stress srr; szz from

Model 1, and Model 2A excited by the uniformly distributed pressure pulse following pav in
Fig. 2(b). Sensors in the disk are close to impact at z=hd ¼ 0:06 and at three other radial stations.
Fig. 3(a) plots the w history from Model 1. At all radial stations, the history is linear with slope
equal to footprint velocity VftC550 in=s (14 m=s). This value is predicted from conservation of
linear momentum in a 1-D model:

VftCðrhÞpVo=ððrhÞp þ ðrhÞdÞ ¼ 536:5 in=s ð� 13:6 m=sÞ: ð2Þ

Fig. 3(d) plots w from Model 2A. There, the history deviates from linearity and the magnitude is
smaller than that from Model 1 by 25%. Comparing histories of srr from the two models
(Figs. 3(b) and (e)) reveals that shapes are comparable and the magnitude fromModel 2A is lower
than that from Model 1 by 15% at r=rp ¼ 0: This difference drops to 5% at the other sensors. A
similar observation applies to the szz histories in Figs. 3(c) and (f). Fig. 4 compares histories of the
two models at z=hd ¼ 0:5: At this depth, histories become closer in shape but differ in magnitude
by 25% at r=rp ¼ 0: This difference diminishes when r=rp > 1:
Fig. 5 plots histories from Model 3 at z=hd ¼ 0:06: Comparing Figs. 5(a–c) from Model 3 to

Figs. 3(d–f) from Model 2A shows that histories from the two models are similar in shape and
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(a) (b)

Fig. 2. History of average pressure over foot-print from finite volume Model 1: (a) original history, (b) smoothed

history.

Table 2

Relationship between period of numerical oscillation and cell width

Dr (in) %O ðcyc:=msÞ %t ðms=cyc:Þ %cr ¼ 2Dr=%t (in/s)

0.0125 3.42 0.2924 8:55� 104

0.0184 2.33 0.4292 8:57� 104

0.0276 1.55 0.6452 8:56� 104
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magnitude. This suggests that in this regime of velocities and material properties, the response is
independent of dimensionality.

3. Model 2B with prescribed velocity

Close to impact, the main difference between Model 1 and Models 2A and 3 is the type of
forcing function. The coupling in Model 1 is inherently a prescribed velocity while Models 2A and
3 are forced by prescribed pressure. The fact that in Model 1, velocity at the footprint is uniform
along r and almost constant with time motivates Model 2B. The requirement of uniform velocity
over the footprint is achieved as follows.
Divide the circle bounding the footprint into n þ 1 equidistant radial stations with increment

Drp:

0; r1; r2;y; rn�1; rp; rk � rk�1 ¼ Drp ¼ const: ð3Þ
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Fig. 3. Comparison of histories from finite volume Model 1: (a)–(c); and 3-D axisymmetric Model 2A with pressure

excitation: (d)–(f); at z=h ¼ 0:06; —— r=rp ¼ 0; - - - - -; r=rp ¼ 0:5; – – –, r=rp ¼ 1:

M. El-Raheb / Journal of Sound and Vibration 275 (2004) 89–10694



Assume a uniform pressure of unit intensity to act over each annular segment rk�1-rk: The
elasto-dynamic solution to the kth annular pressure segment is outlined below.
Expand each dependent variable in terms of eigenfunctions which satisfy homogeneous

boundary conditions. Express the total displacement ukðr; z; tÞ as a superposition of two terms,

ukðr; z; tÞ ¼ uskðr; zÞfpðtÞ þ uDðr; z; tÞ; ð4Þ

where uskðr; zÞ is the static displacement vector, fpðtÞ is the time dependence of the forcing pressure,
and uDðr; z; tÞ is a displacement vector satisfying the homogeneous dynamic equation of motion.
Express uDðr; z; tÞ in terms of the eigenfunctions Ujðr; zÞ;

uDðr; z; tÞ ¼
X

j

ajkðtÞUjðr; zÞ; ð5Þ

where ajkðtÞ is a generalized co-ordinate. Substituting Eqs. (4) and (5) in the dynamic equations of
motion and enforcing orthogonality of Ujðr; zÞ yields uncoupled equations in ajkðtÞ: For an
undamped elastic disk the equation governing ajkðtÞ is

d2

dt2
þ o2j

� �
ajkðtÞ ¼ %fjkðtÞ; %fjkðtÞ ¼ NajkfpðtÞ=Nj;

Nj ¼
Z rd

0

Z h

0

U2
j ðr; zÞ dz r dr; Najk ¼

Z rd

0

Z h

0

uskðr; zÞ � Ujðr; zÞ dz r dr; ð6Þ
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         finite volume Model  1 3-D axisymmetric Model 2  A
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Fig. 4. Comparison of histories from finite volume Model 1: (a), (b); and 3-D axisymmetric Model 2A with pressure

excitation: (c), (d); at z=h ¼ 0:5; ——, r=rp ¼ 0; - - - - - ; r=rp ¼ 0:5; – – –, r=rp ¼ 1:
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where oj is the resonant frequency in rad/s. The solution to Eq. (6) has the form

ajkðtÞ ¼ �
1

oj

Z t

0

sinojðt � tÞ %fjkðtÞ dt: ð7Þ

Evaluating axial displacement wkðr; z; tÞ from the kth pressure segment at each central point of a
pressure segment rcm ¼ ðrm þ rm�1Þ=2 yields the influence matrix

WkmðtÞ ¼
X

j

ajkðtÞ %wjkðrcm; 0Þ þ wskðrcm; 0ÞfpðtÞ; ð8Þ

where %wjkðrcm; 0Þ and wskðrcm; 0Þ are modal and static axial displacement at rcm from the kth
pressure segment. fpðtÞ in Eqs. (6) and (8) is a first approximation to the time dependence of
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(a)

(b)

(c)

Fig. 5. Histories from 2-D Model 3 with pressure excitation at z=h ¼ 0:06; ——, r=rp ¼ 0; - - - - -; r=rp ¼ 0:5; – – –,
r=rp ¼ 1:
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applied pressure. Enforcing the condition of prescribed displacement wpðtÞ at each time step yields
a set of simultaneous equations in the weights pkðtÞ:Xn

k¼1

WmkðtÞpkðtÞ ¼ wpðtÞ; m ¼ 1; n: ð9Þ

The functions fpðtÞ and wpðtÞ are determined by solving the 1-D coupled problem of projectile and
disk when their radii extend to infinity. A detailed derivation of this model including a viscoelastic
constitutive law is presented in Appendix A.

4. Results

The 1-D Model is applied to the geometry and properties listed in Table 1 in the limit when
radius of projectile and disk approaches infinity. A linear viscoelastic constitutive law is used for
the gelatin disk in the form (see Appendix A, Eq. (A.17))

s ¼ Eod

ð1þ tsioÞ
ð1þ teioÞ

e; ð10Þ

where ðs; eÞ are stress and strain and Eod is the rubbery modulus of the disk. The time constant ts
is assumed in the range 0ptsp5� 10�7 s with ts=te ¼ 10: The constant ratio of ts=te keeps
rubbery modulus, glassy modulus and maximum loss coefficient constant for all ts: Varying ts
shifts curves of log jEcj and Z along the logðOÞ axis as shown in Figs. 6(a,b), where O is frequency
in hertz.
Fig. 7 plots histories of stress szz and velocity v from the 1-D Model at three stations across the

thickness: z=h ¼ 0; 0.5 and 1, where z ¼ 0 is at the struck surface. The time for szz to reach its
peak is termed ‘‘rise time’’. Figs. 7(a) and (e) plot the undamped histories ðts ¼ 0Þ: Immediately
after impact, szz rises instantaneously to 3:16� 103 psi as predicted by Eq. (1), and v rises to
13:6 m=s as predicted by Eq. (2). v is constant throughout the duration of impact. For ts ¼ 10�8 s;
the rise time is 0:5 ms (see Fig. 7(b)), and v follows the same constant value as in the
undamped case (see Fig. 7(f)). For ts ¼ 10�7 s; the rise time is 1 ms and the szz plateau is
modulated by a periodic oscillation. The response at z=h ¼ 0:5 is smoother than that at z=h ¼ 0
(see Fig. 7(c)). This also applies to v as shown in Fig. 7(g). There, the szz plateau is higher than
that in Fig. 7(b) because the transition frequency of the material falls within the frequency
spectrum of the layer (see Fig. 6(a)). For ts ¼ 5� 10�7 s; the rise time reaches 2 ms; the plateau
increases to 9� 103 psi and its period of oscillation increases (see Fig. 7(d)). v at z=h ¼ 0 is still
constant at the undamped level (see Fig. 7(h)). The oscillations modulating the szz plateau can be
explained as follows. In the undamped case, the number of modes needed for convergence is
infinite. As ts increases, dissipation limits the contribution of the high frequency modes. This in
turn reduces the initial slope of the szz history which increases rise time and period of plateau
oscillations.
In summary, viscoelasticity affects the 1-D response as follows:

(1) It increases rise time and period of plateau oscillations. The plateau increases with ts because
the transition frequency shifts and falls within the layer’s frequency spectrum.

(2) Velocity is constant throughout impact and insensitive to ts:
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Fig. 8 plots histories from Model 2B using the integrated velocity from Fig. 7(g) for prescribed
displacement wpðtÞCvt; and the szz history from Fig. 7(c) as a first approximation to fpðtÞ:
Histories of w; srr and szz from Model 2B in Figs. 8(a–c) agree closely in shape and magnitude to
those from Model 1 in Figs. 3(a–c). This shows that response close to impact is sensitive to the
spatial distribution of applied pressure. It also demonstrates that prescribing velocity instead of
pressure more closely approximates the coupled problem of projectile and disk in Model 1
provided the disk material is sufficiently weaker than projectile material.
Fig. 9 illustrates snap-shots of the disk using Model 2B. These resemble the snap-shots in Fig. 1

from Model 1 in flatness over the footprint and bulging of material near the perimeter.
Fig. 10(a) plots instantaneous pressure profiles over the footprint adopting Model 2B. Numbers

marking each profile refer to time. Soon after impact ðt ¼ 2 msÞ the profile is almost uniform,
similar to 1-D propagation. With time, the average pressure drops and the pressure near the
perimeter of the footprint rises. There, higher pressure is needed to produce the same
displacement as that at the center since it has to deform more material. This is evidenced by
comparing snap-shots from Models 2A and 2B near the perimeter (compare Figs. 1(d–f) with
Figs. 9(a–c)).
Fig. 10(b) plots the static pressure profile for a prescribed constant displacement over the

footprint. As with the dynamic case, pressure rises steeply near the perimeter. The circles in
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Fig. 6. Frequency-dependent visco-elastic properties for three ts: (a) log ½Ere�; (b) Z:
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Fig. 10(b) correspond to segment pressures pk; and the curve corresponds to the computed normal
stress szz: All circles should lie on the curve. The offset near the perimeter is caused by truncation
of the series solution in the static analysis. Both static and dynamic profiles include a periodic
undulation which is an artifact caused by the finite number of pressure segments pk in the
calculation of Wkm in Eq. (8). In the present example, the footprint radius is divided into eight
segments, which explains the eight peaks on the profile.
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Fig. 7. Histories of stress szz and velocity v following impact on a viscoelastic layer from the 1-D Model: (a), (e) ts ¼ 0;
(b), (f) ts ¼ 10�8 s�1; (c), (g) ts ¼ 10�7 s�1; (d), (h) ts ¼ 5� 10�7 s�1;——, z=h ¼ 0; - - - - - - -, z=h ¼ 0:5; – – –, z=h ¼ 1:
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5. Conclusion

The transient response from impact on a weak viscoelastic disk is analyzed by four different
models:

1. A 3-D axisymmetric finite volume model that couples projectile and disk.
2-A. A 3-D axisymmetric analytical model forced by prescribed pressure determined by

averaging footprint pressure in Model 1.
3. A 2-D analytical model including a viscoelastic constitutive model forced as in Model 2A.

2-B. A 3-D axisymmetric analytical model forced by prescribed velocity from a 1-D model that
couples projectile and disk when their radii approach infinity.
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(c)

Fig. 8. Histories from 3-D axisymmetric Model 2B with prescribed velocity: (a) w; (b) srr; (c) szz at z=h ¼ 0:06; ——,
r=rp ¼ 0; - - - - -; r=rp ¼ 0:5; – – –, r=rp ¼ 1:
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Fig. 10. Pressure distribution over foot-print from 3-D axisymmetric Model 2B with velocity excitation: (a) dynamic,

(b) static.

Fig. 9. Snap-shots from 3-D axisymmetric Model 2B with velocity excitation: (a) t ¼ 4 ms; (b) t ¼ 8 ms; (c) t ¼ 12 ms:
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The study revealed numerical artifacts arising from the finite volume method, the ability to
relate the two different 3-D axisymmetric models via a matrix of influence coefficients, and the
agreement between results predicted by the 3-D and 2-D models. More specific results follow

(1) Close to the disk axis, histories from Models 1 and 2A are similar in shape but differ in
magnitude by 25%. This difference is smaller remote from impact when r=rp > 1:

(2) Histories from Models 2A and 3 agree in magnitude and shape implying that the response is
independent of dimensionality.

(3) In a coupled 1-D Model including viscoelasticity, the rise time increases with ts because high
frequency modes are filtered. The stress plateau increases with ts when the transition
frequency accompanied by a higher modulus falls within the frequency spectrum. Velocity is
almost constant independent of ts:

(4) The influence method allowing a prescribed velocity at the boundary combined with the
coupled 1-D model in (3) above produce an approximate method to the fully coupled Model
1, valid when the disk material is substantially weaker than the projectile material.

(5) Histories of displacement and stress from Model 2B are closer to those from Model 1
implying that the response is sensitive to spatial distribution of applied pressure.

(6) In Model 2B, the pressure profile is almost uniform over the footprint but rises steeply to a
peak near the perimeter.

Appendix A. 1-D impact of two layers including viscoelasticity

Assume that layer 1 strikes layer 2 at an initial velocity V0: Layer 2 is initially at rest with its
other face either stress free or restrained from motion. For each layer with modulus, density and
thickness ðEj; rj; hjÞ; j ¼ 1; 2; the governing 1-D wave equation is

@2wj

@z2
�
1

c2j

@2wj

@t2
¼ 0; ðA:1Þ

where z is the co-ordinate along the thickness with origin at one face of the layer, w is
displacement along z and t is time. The linear problem in (A.1) is solved by modal analysis. Let

wjðz; tÞ ¼ w0jðzÞeiot; i ¼
ffiffiffiffiffiffiffi
�1

p
; ðA:2Þ

where w0jðzÞ are functions of z only and o is frequency in radians per second. Substituting
Eq. (A.2) in (A.1) yields a solution in the form

w0j
ðzÞ ¼ Aj sinðkjzÞ þ Bj cosðkjzÞ; kj ¼ o=cj: ðA:3Þ

The striking layer 1 is stress free at z ¼ 0 while the struck layer 2 can either be stress free or
restrained from motion over its other face:

s01ð0Þ ¼ 0; s02ðh2Þ ¼ 0; stress-free; or u02ðh2Þ ¼ 0; restrained: ðA:4Þ

At the interface of the two layers, displacement and stress are continuous

u01ðh1Þ ¼ u02ð0Þ; s01ðh1Þ ¼ s02ð0Þ: ðA:5Þ
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Invoking the constitutive law and enforcing Eqs. (A.4) and (A.5) produces

A1 ¼ 0; A2 ¼ �B2 cotðk2h2Þ or A2 ¼ B2 tanðk2h2Þ;

B1 cosðk1h1Þ ¼ B2;

� E1k1B1 sinðk1h1Þ ¼
E2k2B2 tanðk2h2Þ; stress-free;

�E2k2B2 cotðk2h2Þ; restrained;

(
ðA:6Þ

for each of the two conditions on face 2 of layer 2. The last two equations in Eq. (A.6) yield the
dispersion relations

r1c1 sinðk1h1Þ cosðk2h2Þ þ r2c2 cosðk1h1Þ sinðk2h2Þ ¼ 0; stress-free;

r1c1 sinðk1h1Þ sinðk2h2Þ � r2c2 cosðk1h1Þ cosðk2h2Þ ¼ 0; restrained; ðA:7Þ

which determine resonant states and corresponding modal state vectors

w01ðzÞ ¼ cosðk1zÞ; s01ðzÞ ¼ �or1c1 sinðk1zÞ;

w02ðzÞ ¼

cosðk1h1Þ
cosðk2h2Þ

cosðk2ðh2 � zÞÞ; stress-free;

cosðk1h1Þ
sinðk2h2Þ

sinðk2ðh2 � zÞÞ; restrained;

8>><
>>:

s02ðzÞ ¼
or2c2

cosðk1h1Þ
cosðk2h2Þ

sinðk2ðh2 � zÞÞ; stress-free;

�or2c2
cosðk1h1Þ
sinðk2h2Þ

cosðk2ðh2 � zÞÞ; restrained:

8>><
>>: ðA:8Þ

The modal solution proceeds by expanding wj in terms of the eigenfunctions

wjðz; tÞ ¼
XM

k¼1

akðtÞwjkðzÞ: ðA:9Þ

Substituting Eq. (A.9) in Eq. (A.1) and enforcing orthogonality of the w0jðxÞ set yields

ð .akðtÞ þ o2kakðtÞÞNk ¼ 0; ðA:10Þ

where ok are solutions of the dispersion relations (A.7) and Nk is generalized mass given by

Nk ¼
X2
j¼1

rj

Z hj

0

w20jðzÞ dz

¼

r1h1
2

1þ
sinð2k1h1Þ
2k1h1

� �
þ
r2h2
2

1þ
sinð2k2h2Þ
2k2h2

� �
cos2ðk1h1Þ
cos2ðk2h2Þ

; stress-free;

r1h1
2

1þ
sinð2k1h1Þ
2k1h1

� �
þ
r2h2
2

1�
sinð2k2h2Þ
2k2h2

� �
cos2ðk1h1Þ

sin2ðk2h2Þ
; restrained:

8>>><
>>>:

ðA:11Þ
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The initial conditions are

’w1ðz; 0Þ ¼ V0; w1ðz; 0Þ ¼ 0; ’w2ðz; 0Þ ¼ 0; w2ðz; 0Þ ¼ 0: ðA:12Þ

Substituting Eq. (A.12) in Eq. (A.10) and enforcing orthogonality of w0jðxÞ yields

akð0Þ ¼ 0; ’akð0Þ ¼
V0r1
Nk

Z h1

0

w01ðzÞ dz ¼
V0r1c1
Nkok

sinðk1kh1Þ: ðA:13Þ

The solution of Eq. (A.10) subject to the initial conditions (A.12) produces

akðtÞ ¼ C1k cosðoktÞ þ C2k sinðoktÞ;

C1k ¼ 0; C2k ¼
’akð0Þ
ok

�
V0r1c1
Nko2k

sinðk1kh1Þ: ðA:14Þ

Expressions of the state vector take the form

wjðz; tÞ ¼
XM

k¼1

C2k sinðoktÞw0jkðzÞ; sjðz; tÞ ¼
XM

k¼1

C2k sinðoktÞs0jkðzÞ; ðA:15Þ

where C2k is given by Eq. (A.14) and the modal state vector fw0jk; s0jkg is given by Eq. (A.8).
The simplest constitutive law of a linear viscoelastic solid includes stress, strain and their first

derivatives in time:

sþ te
@s
@t

¼ Eo eþ ts
@e
@t

� �
; ðA:16Þ

where ts; te are relaxation and creep time constants and Eo is a modulus [17]. This model is termed
Veð1; 1Þ to indicate that it includes time derivatives in stress and strain up to the first. In the
frequency domain Eq. (A.16) yields

s ¼ Eo
ð1þ tsioÞ
ð1þ teioÞ

e: ðA:17Þ

Eq. (A.17) defines the complex modulus

Ec ¼
ð1þ tsioÞ
ð1þ teioÞ

Eo ðA:18Þ

and the loss coefficient Z is defined by

Z ¼ ðEcÞim=jEcj �
oðts � teÞ
1þ o2ðtsteÞ

; ðA:19Þ

Zmax is reached when oT satisfies

oT

ffiffiffiffiffiffiffiffi
tste

p
¼ 1) Zmax ¼ oT ðts � teÞ=2: ðA:20Þ

In the limits of zero or infinite strain-rate the modulus asymptotes to the rubbery modulus ER; or
the glassy modulus EG; respectively. Applying these limits to Eq. (A.18) produces

ER ¼ Eo; EG ¼ Eots=te: ðA:21Þ

Eqs. (A.18)–(A.21) determine ts; te uniquely provided ER;EG and oT are known.
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The complex modulus defined in Eq. (A.18) changes cj and kj in Eq. (A.3) into complex
quantities. These in turn convert (A.7) into an implicit complex eigenvalue problem with
eigenvalues

oj ¼ oRj þ ioIj; oRj > 0; oIj > 0: ðA:22Þ

Unlike the purely elastic case which admits the eigenvalue pair7oj for each eigenfunction, in the
viscoelastic case this pair is þoj and �o�j (not �oj) where ð Þ

� stands for complex conjugate. This
means that o1j ¼ oRj þ ioIj and o2j ¼ �oRj þ ioIj: The reason oI retains the same sign for both
solutions is that oI is a measure of damping which reduces amplitude whether the real frequency
is þoRj or �oRj: Consequently the equation governing ajðtÞ in Eq. (A.10) becomes

d

dt
� ioj

� �
d

dt
þ io�j

� �
ajðtÞ ¼ 0

)
d2

dt2
þ iðo�j � ojÞ

d

dt
þ ojo�j

� 
ajðtÞ ¼ 0: ðA:23aÞ

Noting that iðo�j � ojÞ ¼ 2oIj and ojo�j ¼ o2Rj þ o2Ij; Eq. (A.23a) simplifies to

d2

dt2
þ 2oIj

d

dt
þ o2Rj þ o2Ij

� 
ajðtÞ ¼ 0: ðA:23bÞ

Clearly, oIj acts as a velocity proportional viscous damper. Rewriting Eq. (A.23b) in standard
form:

d2

dt2
þ 2zj %oj

d

dt
þ %o2j

� 
ajðtÞ ¼ 0; zj ¼

oIj

%oj

; %oj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2Rj þ o2Ij

q
: ðA:24Þ
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